Abstract

Asbestos exposure causes activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in lung epithelial cells, the targets of asbestos-associated lung carcinomas. The functional significance of ERK1/2 activation in pulmonary epithelial and mesothelial cells is unclear. Using serum-stimulated mouse alveolar type II epithelial cells as a model for cell cycle reentry, we show that the duration of phospho-ERK1/2 in the nucleus determines cell fate in response to crocidolite asbestos. In response to 10% serum, a proliferative stimulus, phosphorylated ERK1/2 initially accumulated in the nucleus, and reduction of nuclear phospho-ERK1/2 after 2 to 4 hours was followed by expression of cyclin D1 and S-phase entry. Low levels of asbestos (<0.5 microg/cm2) promoted S-phase entry in low (2%) serum through an epidermal growth factor receptor-dependent pathway but did not promote cell cycle progression or induce apoptosis in the presence of high (10%) serum-containing medium. Higher levels of asbestos (1.0 to 5.0 microg/cm2) prolonged the localization of phospho-ERK1/2 in the nucleus in the presence of high serum, impeded S-phase entry, and induced apoptosis in a dose-dependent manner. Immunofluorescence microscopy indicated that the duration of signaling by phospho-ERK1/2 in the nucleus was predictive of cell fate at any concentration of asbestos. After 8 hours of exposure, cells with nuclear phospho-ERK1/2 also were positive for nuclear localization of apoptosis-inducing factor (AIF), an early event in apoptosis. In contrast, asbestos-exposed cells that displayed cytoplasmic phospho-ERK1/2 at 8 hours expressed cyclin D1 and proceeded to S phase. Our studies show that prolonged localization of phospho-ERK1/2 in the nucleus is incompatible with expression of cyclin D1 and is predictive of asbestos-associated cell death by AIF, thereby providing an approach for determining cell fate in asbestos-induced tumorigenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.