Abstract

AbstractThe Early Cretaceous (145–100 Ma) was characterized by long-term greenhouse climates, with a reduced equatorial to polar temperature gradient, although an increasingly large body of evidence suggests that this period was punctuated by episodic global “cold snaps.” Understanding climate dynamics during this high-atmospheric CO2 period of Earth’s history may have significant impact on how we understand climatic feedbacks and predict future global climate changes under an anthropogenically-driven high-pCO2 atmosphere. This study utilizes facies analysis to constrain the paleobathymetry of Lower Cretaceous glendonites—a pseudomorph after ikaite, a mineral that forms naturally at 7 °C or lower—from two paleo-high-latitude (60–70°N) sites in Svalbard, Arctic Norway, to infer global climatic changes during the Early Cretaceous. The original ikaite formed in the offshore transition zone of a shallow marine shelf at water depths of <100 m, suggesting mean annual water temperatures of ≤7 °C at these depths at 60–70°N. We correlate glendonite-bearing horizons from Lower Cretaceous successions around the globe using carbon isotope stratigraphy, in conjunction with the pre-existing biostratigraphic framework, in order to infer northern hemispheric to global climatic cooling. A distinct interval of glendonites in the Northern Hemisphere, from sites >60°N, spans the late Berriasian to earliest Barremian (at least 8.6 m.y.), significantly prolonging the duration of the previously hypothesized Valanginian cold snap (associated with the “Weissert Event”). Widespread glendonites occur again in late Aptian and extend to the early Albian, in both hemispheres, corroborating other proxy evidence for late Aptian cooling. The glendonites from Svalbard suggest that Cretaceous cold episodes were characterized with high latitude (>60°N) shallow water temperatures that are consistent with the existence of a small northern polar ice cap at this time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.