Abstract

BackgroundDunaliella salina Teodoresco, a unicellular, halophilic green alga belonging to the Chlorophyceae, is among the most industrially important microalgae. This is because D. salina can produce massive amounts of β-carotene, which can be collected for commercial purposes, and because of its potential as a feedstock for biofuels production. Although the biochemistry and physiology of D. salina have been studied in great detail, virtually nothing is known about the genomes it carries, especially those within its mitochondrion and plastid. This study presents the complete mitochondrial and plastid genome sequences of D. salina and compares them with those of the model green algae Chlamydomonas reinhardtii and Volvox carteri.ResultsThe D. salina organelle genomes are large, circular-mapping molecules with ~60% noncoding DNA, placing them among the most inflated organelle DNAs sampled from the Chlorophyta. In fact, the D. salina plastid genome, at 269 kb, is the largest complete plastid DNA (ptDNA) sequence currently deposited in GenBank, and both the mitochondrial and plastid genomes have unprecedentedly high intron densities for organelle DNA: ~1.5 and ~0.4 introns per gene, respectively. Moreover, what appear to be the relics of genes, introns, and intronic open reading frames are found scattered throughout the intergenic ptDNA regions -- a trait without parallel in other characterized organelle genomes and one that gives insight into the mechanisms and modes of expansion of the D. salina ptDNA.ConclusionsThese findings confirm the notion that chlamydomonadalean algae have some of the most extreme organelle genomes of all eukaryotes. They also suggest that the events giving rise to the expanded ptDNA architecture of D. salina and other Chlamydomonadales may have occurred early in the evolution of this lineage. Although interesting from a genome evolution standpoint, the D. salina organelle DNA sequences will aid in the development of a viable plastid transformation system for this model alga, and they will complement the forthcoming D. salina nuclear genome sequence, placing D. salina in a group of a select few photosynthetic eukaryotes for which complete genome sequences from all three genetic compartments are available.

Highlights

  • Dunaliella salina Teodoresco, a unicellular, halophilic green alga belonging to the Chlorophyceae, is among the most industrially important microalgae

  • Genetic maps of the D. salina organelle genomes are shown in Figures 1 and 2; for comparison, these two figures include the corresponding genetic maps from C. reinhardtii and Volvox carteri

  • A schematic compilation comparing the amounts of noncoding DNA in the D. salina organelle genomes with those from other completely sequenced organelle genomes is shown in Figure 4, and analyses of the repetitive elements within the D. salina organelle DNA are summarized in Figure 5 and Supplementary Figures S1 and S2 [see Additional files 1 and 2]

Read more

Summary

Introduction

Dunaliella salina Teodoresco, a unicellular, halophilic green alga belonging to the Chlorophyceae, is among the most industrially important microalgae. This is because D. salina can produce massive amounts of βcarotene, which can be collected for commercial purposes, and because of its potential as a feedstock for biofuels production. Dunaliella salina Teodoresco [1] is one of the best-studied unicellular green algae [2,3,4] This is because D. salina is halotolerant, thriving in extreme saline environments [3], and because it can produce large quantities of β-carotene (up to 10% of the cell's dry weight) in lipid globules located within the chloroplast [5,6]. The first step in developing an efficient and reliable plastid transformation system for D. salina is to sequence its organelle genomes

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call