Abstract
HIV-1 gp120, an important subunit of the envelope spikes that decorate the surface of virions, is known to play a vital role in neuronal injury during HIV-1-associated neurocognitive disorder (HAND), although the pathological mechanism is not fully understood. Our previous studies have suggested that the V3 loop of HIV-1 gp120 (HIV-1 gp120 V3 loop) can induce neuronal apoptosis in the hippocampus, resulting in impairment in spatial learning and memory in Sprague-Dawley (SD) rats. In this study, we demonstrated that autophagy was significantly increased in rat primary hippocampal neurons in response to treatment of HIV-1 gp120 V3 loop. Importantly, HIV-1 gp120 V3 loop-induced autophagy played a dual role in the cell survival and death. An increase in autophagy for a short period inhibited apoptosis of neurons, while persistent autophagy over an extended period of time played a detrimental role by augmenting the apoptotic cascade in rat primary hippocampal neurons. In addition, we found that the HIV-1 gp120 V3 loop induced autophagy via AMPK/mTOR-dependent and calpain/mTOR-independent pathways, and the ERK/mTOR pathway plays a partial role. These findings provide evidence that HIV-1-induced autophagy plays a dual role in the survival and apoptosis of the primary rat hippocampal neurons and persistent autophagy may contribute to the pathogenesis of HAND, and autophagy modulation may represent a potential therapeutic strategy for reducing neuronal damage in HAND.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.