Abstract
The notion of a dual polyhedral product is introduced as a generalization of Hovey's definition of Lusternik–Schnirelmann cocategory. Properties established from homotopy decompositions that relate the based loops on a polyhedral product to the based loops on its dual are used to show that if X is a simply-connected space then the weak cocategory of X equals the homotopy nilpotency class of ΩX. This answers a fifty year old problem posed by Ganea. The methods are applied to determine the homotopy nilpotency class of quasi-p-regular exceptional Lie groups and sporadic p-compact groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.