Abstract

AbstractWe present a new model, called the dual‐microfacet, for those materials such as paper and plastic formed by a thin, transparent slab lying between two surfaces of spatially varying roughness. Light transmission through the slab is represented by a microfacet‐based BTDF which tabulates the microfacet's normal distribution (NDF) as a function of surface location. Though the material is bounded by two surfaces of different roughness, we approximate light transmission through it by a virtual slab determined by a single spatially‐varying NDF. This enables efficient capturing of spatially variant transparent slices. We describe a device for measuring this model over a flat sample by shining light from a CRT behind it and capturing a sequence of images from a single view. Our method captures both angular and spatial variation in the BTDF and provides a good match to measured materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.