Abstract

Motivated by the quest for an analogue of the Gromov–Hausdorff distance in noncommutative geometry which is well-behaved with respect to C⁎-algebraic structures, we propose a complete metric on the class of Leibniz quantum compact metric spaces, named the dual Gromov–Hausdorff propinquity. This metric resolves several important issues raised by recent research in noncommutative metric geometry: it makes *-isomorphism a necessary condition for distance zero, it is well-adapted to Leibniz seminorms, and — very importantly — is complete, unlike the quantum propinquity which we introduced earlier. Thus our new metric provides a natural tool for noncommutative metric geometry, designed to allow for the generalizations of techniques from metric geometry to C*-algebra theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.