Abstract

Sphingomyelin membranes were prepared with different levels of oxidative damage caused by tert-butyl hydroperoxide (TBH). Temperature-induced changes in membrane hydrocarbon chain packing (phase transitions) were monitored using infrared spectroscopy. Lipid phase transition characteristics were evaluated from thermodynamic parameters fitted to the experimental transition curve data. At temperatures below the lipid phase transition Tc, hydrocarbon chains pack in an ordered state whereas above the Tc the hydrocarbon chains pack in a disordered state. Compared to the non-oxidized control, the packing of the hydrocarbon chains of mildly oxidized sphingomyelin (less than 10 nmol TBH/mg lipid) was no different at all temperatures below the Tc, and was more ordered above the Tc. The hydrocarbon chains of strongly oxidized sphingomyelin (greater than 10 nmol TBH/mg lipid) were more disordered at temperatures above and below the Tc compared to the control samples. These results suggest that lipid oxidation has a dual effect on lipid order. A more ordered or disordered state may result depending on the degree of oxidation and the state of lipid order prior to oxidation. These results could be important for explaining the structural changes in oxidized membranes high in sphingomyelin such as those found in the ocular lens and liver plasma membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.