Abstract

The characterization of pore-space connectivity in porous media at the sediment/water interface is critical in understanding contaminant transport and reactive biogeochemical processes in zones of groundwater and surface-water exchange. Previous in situ studies of dual-domain (i.e., mobile/less-mobile porosity) systems have been limited to solute tracer injections at scales of meters to hundreds of meters and subsequent numerical model parameterization using fluid concentration histories. Pairing fine-scale (e.g., sub-meter) geoelectrical measurements with fluid tracer data over time alleviates dependence on flowpath-scale experiments, enabling spatially targeted characterization of shallow sediment/water interface media where biogeochemical reactivity is often high. The Dual-Domain Porosity Apparatus is a field-tested device capable of variable rate-controlled downward flow experiments. The Dual-Domain Porosity Apparatus facilitates inference of dual-domain parameters, i.e., mobile/less-mobile exchange rate coefficient and the ratio of less mobile to mobile porosity. The Dual-Domain Porosity Apparatus experimental procedure uses water electrical conductivity as a conservative tracer of differential loading and flushing of pore spaces within the region of measurement. Variable injection rates permit the direct quantification of the flow-dependence of dual-domain parameters, which has been theorized for decades but remains challenging to assess using existing experimental methodologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.