Abstract

The dual crop coefficient approach accounts separately for plant transpiration and soil evaporation by using the basal crop coefficient and the evaporation coefficient, respectively. The SIMDualKc model, which performs the soil water balance simulation with estimation of the actual crop evapotranspiration (ET) with the dual crop coefficient approach, was applied to a drip-irrigated peach orchard under Mediterranean conditions. Orchard ET was obtained with the eddy covariance technique, which was subsequently correlated with tree transpiration estimated from sap flow measurements and soil evaporation determined with microlysimeters, thus providing ET for the whole irrigation season. Two years of field observations were used for model calibration and validation using those ET measurements and taking into account the fraction of ground covered by trees through a density factor which adjusts the basal crop coefficient. Model fitting relative to ET observations during calibration and validation provided indices of agreement averaging 0.90, coefficients of regression close to 1.0, root mean square errors around 0.41 mm and average absolute errors of 0.32 mm. Model fitting relative to transpiration and to soil evaporation produced similar results, so showing the adequateness of modelling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.