Abstract

AbstractThe flow regime paradigm is central to the aquatic sciences, where flow drives critical functions in lotic systems. Non‐perennial streams comprise the majority of global river length, thus we extended this paradigm to stream drying. Using 894 USGS gages, we isolated 25,207 drying events from 1979 to 2018, represented by a streamflow peak followed by no flow. We calculated hydrologic signatures for each drying event and using multivariate statistics, grouped events into drying regimes characterized by: (a) fast drying, (b) long no‐flow duration, (c) prolonged drying following low antecedent flows, (d) drying without a distinctive hydrologic signature. 77% of gages had more than one drying regime at different times within the study period. Random forests revealed land cover/use are more important to how a river dries than climate or physiographic characteristics. Clustering stream drying behavior may allow practitioners to more systematically adapt water resource management practices to specific drying regimes or rivers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.