Abstract
The dry sliding wear behavior of various 2xxx and 7xxx aluminum alloys along with an aluminum alloy with the surface transformed to alumina (Al 2 O 3 ) and a hypereutectic aluminum silicon alloy (B390) were evaluated with a pin-on-disk wear apparatus to simulate wire-rope against sheave wheel interactions for a unique Naval application. Simulation of a steel cable on an aluminum sheave wheel was accomplished by using a 387 steel (RC 58) disk containing 45° cuts to mimic individual strands of the wire-rope. Using system dictated conditions, the ring was rotated at 1500 RPM to obtain a sliding velocity of 9.42 m/s, with the contact pressure of the candidate aluminum pins adjusted to maintain a steady 0.69 MPa (100 psi). Under the prescribed conditions, the transformed alumina exhibited a superior wear resistance when compared to the 2xxx, 7xxx, and B390 alloys. However, the brittle material did fracture on one occasion, thereby indicating the potential for deleterious abrasive debris. Wear mode analyses of the various materials using optical and electron microscopy revealed wear mechanisms that included adhesion, abrasion, and fracture. Final manuscript approved May 22, 2006 Review led by Emmanuel Ezugwu
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.