Abstract

Background: The treatment of non-tuberculous mycobacterial (NTM) infections is challenging because of the difficulty in obtaining phenotypic (pDST) and/or molecular (mDST) drug susceptibility testing and the need of a multi-drug regimen. Objectives: The objective was to describe the in vitro susceptibility patterns of various NTM species through an analysis of susceptibility results obtained on isolates collected between 2018 and 2023. Methods: Species identification and mutations in rrs or rrl genes (mDST) were identified by a line probe assay, while the pDST was performed by broth microdilution and interpreted according to CLSI criteria. Results: We analysed 337 isolates of NTM belonging to 15 species/subspecies. The Mycobacterium avium complex (MAC) was the most common (62%); other species identified included M. gordonae (11%), M. kansasii (5%), the M. abscessus complex (8%), M. chelonae (6%), and M. fortuitum (2%). The results of pDST (claritromycin and amikacin) and mDST (rrl and rrs genes) on 66 NTM strains showed that while wild-type rrl and rrs occurred in 86.3% and 94% strains, respectively, the pDST showed 88% sensitivity for clarithromycin and 57.5% for amikacin. The main incongruity was observed for macrolides. Conclusions: Most NTM are likely to be susceptible to macrolides and aminoglycosides. The molecular identification of resistant genotypes is accurate and strongly recommended for optimal patient management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.