Abstract
Abstract Dipeptidyl peptidase-IV (DPP-IV) inhibitor is one of the drug targets for the treatment of diabetes. Some classes of those drugs have dangerous side effects so is critical to develop safer drugs. By using rotation forest methods and in silico, it will be more efficient than conventional methods that require a lot more costs and are more time-consuming. One of in silico methods used in drug design is ligand-based virtual screening (LBVS). The interlocking structure capabilities are identified by the LBVS Process. The fingerprint is one of the structural interpretations. Molecular fingerprints are used as a criterion for LBVS in computational drug discovery. A circular fingerprint is found to improve LBVS performance. In this paper, we used the representation of ECFP and FCFP as a method to extract features, after which we used a Rotation Forest classifier to predict active and inactive compounds. The experiment result shows Rotation Forest has good prediction based on the different circular fingerprint and can successfully better classify with results of MCC being 85% and accuracy 92%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.