Abstract

Rapid climate change and intensified anthropogenic disturbances have dropped groundwater level and altered hydrology conditions, provoked the drought-induced succession in alpine swamp meadows. However, we currently lack general cognition on how the drought-induced succession influence the ecosystem structure and functions in alpine swamp meadows. Here, we examined the changes of the main above- and below-ground ecological functions following the drought-induced succession, including swamp meadow to alpine meadow, shrub meadow, and steppe meadow. We found that both above- and below-ground ecosystem multifunctionality (EMF) indexes of the swamp meadows both decreased with the drought-induced succession. Specifically, ecosystem functions of alpine swamp meadow such as plant productivity, soil water content, soil fertility, and carbon and nitrogen all declined consistently following the drought-induced succession. Further, our analysis showed that the dynamics of the above- and below-ground EMF were positively related to plant productivity, soil hydrological properties, and nutrient availability. The decreases in soil water and nutrient contents by the drought-induced succession were the major factors that resulted in the decreased EMF. Taken together, our results demonstratedthat the drought-induced succession decreased EMF of alpine swamp meadow, and our finding revealed that soil water and nutrient contents changes were critical indicators of the EMF change during the drought-induced succession. Thus, soil hydrology and nutrient functions conservation are key to maintaining the EMF of alpine swamp meadows under ongoing climate changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.