Abstract

The Drosophila Na,K-ATPase (or sodium pump) alpha-subunit gene was found to contain 10 exons and span approx. 25 kb. Two nearly adjacent transcriptional initiation sites were identified, and the 2085-nucleotide sequence upstream of the first transcriptional start was analysed for promoter activity in transfected Drosophila SL2 cells. This region was found to contain many cis-acting elements that influence promoter activity, including elements that confer 2- to 3-fold higher activity in SL2 cells cultured at 30 degrees C versus 22 degrees C. Temperature-sensitive transcriptional regulation of the Na,K-ATPase alpha-subunit in Drosophila is a plausible mechanistic candidate for the factor driving temperature-dependent up-regulation of the Na,K-ATPase alpha-subunit described here for fly strains homozygous for single P-element insertions in the alpha-subunit gene. Four new P-element insertion strains were identified in this study, each insertion site lying within the first intron of the Na,K-ATPase alpha-subunit gene. The insertion in strain 0462 resulted in cold-sensitive recessive lethality; flies homozygous for the 0462 mutation could be rescued by growth at 29-30 degrees C, a condition that partially corrected a deficiency in the level of Na,K-ATPase alpha-subunit. The high-temperature rescue of homozygous 0462 flies appeared to result primarily from improved Na,K-ATPase expression rather than an increase in the rate of ion transport per Na,K-ATPase molecule. These observations point to a role for sodium-pump activity in determining the range of temperature tolerance in Drosophila and demonstrate that relatively subtle changes in sodium-pump expression can have major consequences in whole organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.