Abstract

For decades, the Drosophila larval neuromuscular junction (NMJ) has been a go-to model for synaptic development. This simple, accessible system is composed of a repeating pattern of 33 distinct neurons that stereotypically innervate 30 muscles. Fundamental mechanisms that underlie diverse aspects of axon pathfinding, synaptic form, and function have been uncovered at the NMJ, and new pathways continue to be uncovered. These discoveries are fueled by the ease of dissections and an extensive array of techniques. Chief among these techniques are various microscopy approaches, including super-resolution and electron microscopy. Functionally, the Drosophila NMJ is glutamatergic, similar to the vertebrate central synapses, making it a great model to study normal development and neurological diseases. Here we provide a brief overview of the larval neuromuscular system, highlighting the connectivity patterns, development, and some of the mechanisms underlying these processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.