Abstract

We have isolated a cDNA clone, called Dmyd for Drosophila myogenic-determination gene, that encodes a protein with structural and functional characteristics similar to the members of the vertebrate MyoD family. Dmyd clone encodes a polypeptide of 332 amino acids with 82% identity to MyoD in the 41 amino acids of the putative helix-loop-helix region and 100% identity in the 13 amino acids of the basic domain proposed to contain the essential recognition code for muscle-specific gene activation. Low-stringency hybridizations indicate that Dmyd is not a member of a multigene family similar to MyoD in vertebrates. Dmyd is a nuclear protein in Drosophila, consistent with its role as a nuclear-gene regulatory factor, and is proposed to be a transiently expressed marker for muscle founder cells. We have used an 8-kilobase promoter fragment from the gene, which contains the first 55 amino acids of the Dmyd protein, joined to lacZ, to follow myogenic precursor cells into muscle fibers with antibodies to beta-galactosidase and to Dmyd. Unlike the myogenic factors in vertebrate muscle cells, Dmyd appears to be expressed at a much lower level in differentiated Drosophila muscles, so Dmyd cannot be followed continuously as a muscle marker. This fact is reflected in the loss of Dmyd RNA expression in 12- to 24-hr embryos, a major period of early myogenesis, as well as in the undetectable level of the nuclear antigen in primary cultures of embryonic and adult Drosophila muscle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.