Abstract

GIT1-like proteins are GTPase-activating proteins (GAPs) for Arfs and interact with a variety of signaling molecules to function as integrators of pathways controlling cytoskeletal organization and cell motility. In this report, we describe the characterization of a Drosophila homologue of GIT1, dGIT, and show that it is required for proper muscle morphogenesis and myotube guidance in the fly embryo. The dGIT protein is concentrated at the termini of growing myotubes and localizes to muscle attachment sites in late stage embryos. dgit mutant embryos show muscle patterning defects and aberrant targeting in subsets of their muscles. dgit mutant muscles fail to localize the p21-activated kinase, dPak, to their termini. dPak and dGIT form a complex in the presence of dPIX and dpak mutant embryos show similar muscle morphogenesis and targeting phenotypes to that of dgit. We propose that dGIT and dPak are part of a complex that promotes proper muscle morphogenesis and myotube targeting during embryogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.