Abstract

The segmented portion of the Drosophila embryonic central nervous system develops from a bilaterally symmetrical, segmentally reiterated array of 30 unique neural stem cells, called neuroblasts. The first 15 neuroblasts form about 30-60 minutes after gastrulation in two sequential waves of neuroblast segregation and are arranged in three dorsoventral columns and four anteroposterior rows per hemisegment. Each neuroblast acquires a unique identity, based on gene expression and the unique and nearly invariant cell lineage it produces. Recent experiments indicate that the segmentation genes specify neuroblast identity along the AP axis. However, little is known as to the control of neuroblast identity along the DV axis. Here, I show that the Drosophila EGF receptor (encoded by the DER gene) promotes the formation, patterning and individual fate specification of early forming neuroblasts along the DV axis. Specifically, I use molecular markers that identify particular neuroectodermal domains, all neuroblasts or individual neuroblasts, to show that in DER mutant embryos (1) intermediate column neuroblasts do not form, (2) medial column neuroblasts often acquire identities inappropriate for their position, while (3) lateral neuroblasts develop normally. Furthermore, I show that active DER signaling occurs in the regions from which the medial and intermediate neuroblasts will later delaminate. In addition, I demonstrate that the concomitant loss of rhomboid and vein yield CNS phenotypes indistinguishable from DER mutant embryos, even though loss of either gene alone yields minor CNS phenotypes. These results demonstrate that DER plays a critical role during neuroblast formation, patterning and specification along the DV axis within the developing Drosophila embryonic CNS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.