Abstract

Photoreceptor cells of the Drosophila compound eye begin to develop specialized membrane foldings at the apical surface in midpupation. The microvillar structure ultimately forms the rhabdomere, an actin-rich light-gathering organelle with a characteristic shape and morphology. In a P-element transposition screen, we isolated mutations in a gene, bifocal (bif), which is required for the development of normal rhabdomeres. The morphological defects seen in bif mutant animals, in which the distinct contact domains established by the newly formed rhabdomeres are abnormal, first become apparent during midpupal development. The later defects seen in the mutant adult R cells are more dramatic, with the rhabdomeres enlarged, elongated, and frequently split. bif encodes a novel putative protein of 1063 amino acids which is expressed in the embryo and the larval eye imaginal disc in a pattern identical to that of F actin. During pupal development, Bif localizes to the base of the filamentous actin associated with the forming rhabdomeres along one side of the differentiating R cells. On the basis of its subcellular localization and loss-of-function phenotype, we discuss possible roles of Bif in photoreceptor morphogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.