Abstract
Dropper failure seriously threatens the operation safety of a high-speed railway. In this work, for a simple chain suspension catenary, one span with five droppers is performed to establish a model and thus the effects of the moving load speed on dropper stress are investigated. First, the partial differential vibration equation of dropper is obtained through the mechanical analysis and converted into the finite difference equation. Then, we consider contact line as a beam element to obtain its motion equation. Furthermore, the boundary and initial conditions of five droppers are determined. Finally, the stresses of five droppers are numerically calculated and the effects of the moving load speed on dropper stress are investigated by writing a MATLAB code. The results suggest that the dropper location significantly affects its stress. Compared with other droppers, droppers II and IV have much more severe vibration amplitudes. Different moving load speeds could cause different stress change of each dropper. With the increasing speed, dropper experiences longer bending compression stage and the bending amplitude increases. The impact of the moving load speed on dropper stress is significant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.