Abstract

We consider a collection of droplets during the late stage of phase separation in a closed system. Its coarsening is driven by surface energy and leads asymptotically to a linear growth of the mean droplet volume with time (Ostwald ripening). The droplets grow either from the supersaturated uncondensed phase (coalescence) or by collisions with subsequent fusion (coagulation). The combination of both mechanisms leads asymptotically to a self-similar evolution of the size distribution of the droplets when the coagulation kernel is homogeneous with degree zero. We calculate the scaled droplet size distribution for Brownian and constant kernel and compare the effects of coagulation with the effects of correlation and screening discussed in the literature. We compare our results for the asymptotic scaled distribution with computer simulations for the combined coalescence and coagulation processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call