Abstract

To offer increased security and comfort, advanced driver-assistance systems (ADASs) should consider individual driving styles. Here, we present a system that learns a human's basic driving behavior and demonstrate its use as ADAS by issuing alerts when detecting inconsistent driving behavior. In contrast to much other work in this area, which is based on or obtained from simulation, our system is implemented as a multithreaded parallel central processing unit (CPU)/graphics processing unit (GPU) architecture in a real car and trained with real driving data to generate steering and acceleration control for road following. It also implements a method for detecting independently moving objects (IMOs) for spotting obstacles. Both learning and IMO detection algorithms are data driven and thus improve above the limitations of model-based approaches. The system's ability to imitate the teacher's behavior is analyzed on known and unknown streets, and results suggest its use for steering assistance but limit the use of the acceleration signal to curve negotiation. We propose that this ability to adapt to the driver can lead to better acceptance of ADAS, which is an important sales argument.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.