Abstract

Nearly linear current-voltage curves are frequently found in biological ion channels. Using the drift limit of the substantially non-linear Poisson-Nernst-Planck equations, we explain such behavior of diffusion-controlled charge transport systems. Starting from Gauss' law, drift, and continuity equations we derive a simple analytical current-voltage relation, which accounts for this deviation from linearity. As shown previously, the drift limit of the Nernst-Planck equation applies if the total electric current is dominated by the electric field, and integral contributions from concentration gradients are small. The simple analytical form of the drift current-voltage relations makes it an ideal tool to analyze experiment current-voltage curves. We also solved the complete Poisson-Nernst-Planck equations numerically, and determined current-voltage curves over a wide range of voltages, concentrations, and Debye lengths. The simulation fully supports the analytical estimate that the current-voltage curves of simple charge transport systems are dominated by the drift mechanism. Even those relations containing the most extensive approximations remained qualitatively within the correct order of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.