Abstract
Laparoscopy is an imaging technique that enables minimally-invasive procedures in various medical disciplines including abdominal surgery, gynaecology and urology. To date, publicly available laparoscopic image datasets are mostly limited to general classifications of data, semantic segmentations of surgical instruments and low-volume weak annotations of specific abdominal organs. The Dresden Surgical Anatomy Dataset provides semantic segmentations of eight abdominal organs (colon, liver, pancreas, small intestine, spleen, stomach, ureter, vesicular glands), the abdominal wall and two vessel structures (inferior mesenteric artery, intestinal veins) in laparoscopic view. In total, this dataset comprises 13195 laparoscopic images. For each anatomical structure, we provide over a thousand images with pixel-wise segmentations. Annotations comprise semantic segmentations of single organs and one multi-organ-segmentation dataset including segments for all eleven anatomical structures. Moreover, we provide weak annotations of organ presence for every single image. This dataset markedly expands the horizon for surgical data science applications of computer vision in laparoscopic surgery and could thereby contribute to a reduction of risks and faster translation of Artificial Intelligence into surgical practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.