Abstract

Fundamental solid state physics phenomena often occur at very low temperatures, requiring liquid helium cooling in experimental studies. Transmission electron microscopy is a well-established characterization method, which allows probing crucial materials properties down to nanometre and even atomic resolution. Due to the limited space in the object plane, however, suitable liquid-helium cooling is very challenging. To overcome this limitation, resolving power was sacrificed in our Dresden in-situ (S)TEM special, resulting in more than 60 mm usable experimental space in all directions with the specimen in the centre. With the installation of a continuous-flow liquid-helium cryostat, any temperature between 6.5 K and 400 K can be set precisely and kept for days. The information limit of the Dresden in-situ (S)TEM special is about 5 nm. It is shown that the resolution of the Dresden in-situ (S)TEM special is currently not limited by aberrations, but by external instabilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call