Abstract

The Lotus has been the symbol of purity for thousands of years; contaminations and pathogens are washed off the surfaces of Lotus and some other plants with rain or even dew. After the introduction of scanning electron microscopy, we were able to resolve the mechanism behind this phenomenon. It took some further decades before in-depth studies on self-cleaning with plants were conducted and the effect could be understood in detail. We identified extreme water-repellency (‘superhydrophobicity’), characterized by very high contact angles and low sliding angles, as the prerequisite for self-cleaning properties. We could show that the combination of two factors is necessary for obtaining a high degree of water-repellency: (1) low energy surfaces being hydrophobic and (2) surface structures that significantly increase hydrophobicity. It is suggested that this mechanism plays an important role in the protection of plants against pathogens. Our technological application of this effect has resulted in the development of successful, eco-friendly and sustainable industrial products. Another interesting property was found with superhydrophobic surfaces of certain aquatic and semi-aquatic plants and animals: here a layer of air under water is retained. We present a new approach of using this feature for creating structured, air-retaining surfaces for technical underwater applications. It is proposed that such surfaces can reduce significantly the drag of large ships. We conclude that basic biological research is of particular importance for true innovation. Our research on superhydrophobic self-cleaning biological surfaces and the development of similar engineered materials suggests that biomimicry is a matter of multi-stage processes rather than a simple copying of biological developments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.