Abstract

An anaerobic bacterium Clostridium buturicum QXYZ514 was isolated from a pond soil sample located neighboring to a biodiesel factory. This bacterium possesses excellent metabolic features for converting biodiesel-derived glycerol into various bioproducts, including 1,3-propanediol, butyrate, lactate, and acetate, and fuels, like ethanol and butanol. To further improve the yield of the target products and minimize the production of the by-products, the whole genome sequence of this multipurpose strain might provide necessary genetic information, and hence, the complete genome of QXYZ514 strain was sequenced using the PacBio RS II sequencing method. According to the complete genome sequence, the genome of QXYZ514 consisted of two circular chromosomes with a total of 4,636,461bp, where GC content was found to be 28.76%. Major predicted features of the genome included a total of 4220 coding sequences (CDS), 87 tRNAs genes, and 36 rRNAs genes, which were annotated with the help of different databases for a better understanding of this strain. Six possible CRISPR components were also predicted in the genome. The exploration of the complete genome sequence of the QXYZ514 strain would have the potential to enrich the diversity of this species, and to recognize some significant hydrolytic enzymes, which could provide the references for overcoming the bottlenecks in the biorefinery usage of this bacterium in the valorization of biodiesel-derived glycerol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call