Abstract

Abstract DR21(OH) ridge, the central part of a high-mass star- and cluster-forming hub-filament system, is resolved spatially and kinematically into three nearly parallel fibers (f1, f2, and f3) with a roughly north–south orientation, using the observations of molecular transitions of H13CO+ (1 − 0), N2H+ (1 − 0), and NH2D (11,1 − 10,1) with the Combined Array for Research in Millimeter Astronomy. These fibers are all mildly supersonic (σ velocity dispersions about 2 times the sound speed), having lengths around 2 pc and widths about 0.1 pc, and they entangle and conjoin in the south where the most active high-mass star formation takes place. They all have line masses 1–2 orders of magnitude higher than their low-mass counterparts and are gravitationally unstable both radially and axially. However, only f1 exhibits high-mass star formation all the way along the fiber, yet f2 and f3 show no signs of significant star formation in their northern parts. A large velocity gradient increasing from north to south is seen in f3, and can be well reproduced with a model of freefall motion toward the most massive and active dense core in the region, which corroborates the global collapse of the ridge and suggests that the disruptive effects of the tidal forces may explain the inefficiency of star formation in f2 and f3. On larger scales, some of the lower-density, peripheral filaments are likely to be the outer extensions of the fibers, and provide hints on the origin of the ridge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.