Abstract

This paper introduces the double-density dual-tree discrete wavelet transform (DWT), which is a DWT that combines the double-density DWT and the dual-tree DWT, each of which has its own characteristics and advantages. The transform corresponds to a new family of dyadic wavelet tight frames based on two scaling functions and four distinct wavelets. One pair of the four wavelets are designed to be offset from the other pair of wavelets so that the integer translates of one wavelet pair fall midway between the integer translates of the other pair. Simultaneously, one pair of wavelets are designed to be approximate Hilbert transforms of the other pair of wavelets so that two complex (approximately analytic) wavelets can be formed. Therefore, they can be used to implement complex and directional wavelet transforms. The paper develops a design procedure to obtain finite impulse response (FIR) filters that satisfy the numerous constraints imposed. This design procedure employs a fractional-delay allpass filter, spectral factorization, and filterbank completion. The solutions have vanishing moments, compact support, a high degree of smoothness, and are nearly shift-invariant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.