Abstract

The double-stranded RNA-binding motif (dsRBM) is an alphabetabetabetaalpha fold with a well-characterized function to bind structured RNA molecules. This motif is widely distributed in eukaryotic proteins, as well as in proteins from bacteria and viruses. dsRBM-containing proteins are involved in processes ranging from RNA editing to protein phosphorylation in translational control and contain a variable number of dsRBM domains. The structural work of the past five years has identified a common mode of RNA target recognition by dsRBMs and dissected this recognition into two functionally separated interaction modes. The first involves the recognition of specific moieties of the RNA A-form helix by two protein loops, while the second is based on the interaction between structural elements flanking the RNA duplex with the first helix of the dsRBM. The latter interaction can be tuned by other protein elements. Recent work has made clear that dsRBMs can also recognize non-RNA targets (proteins and DNA), and act in combination with other dsRBMs and non-dsRBM motifs to play a regulatory role in catalytic processes. The elucidation of functional networks coordinated by dsRBM folds will require information on the precise functional relationship between different dsRBMs and a clarification of the principles underlying dsRBM-protein recognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.