Abstract

In this paper, we present two simple approaches for deriving anisotropic distribution functions for a wide range of spherical models. The first method involves multiplying and dividing a basic augmented density with polynomials in $r$ and constructing more complex augmented densities in the process, from which we obtain the double-power distribution functions. This procedure is applied to a specific case of the Veltmann models that is known to closely approximate the Navarro-Frenk-White (NFW) profile, and also to the Plummer and Hernquist profiles (in the appendix). The second part of the paper is concerned with obtaining hypervirial distribution functions, i.e. distribution functions that satisfy the local virial theorem, for several well-known models. In order to construct the hypervirial augmented densities and the corresponding distribution functions, we start with an appropriate ansatz for the former and proceed to determine the coefficients appearing in that ansatz by expanding the potential--density pair as a series, around $r=0$ and $r=\infty$. By doing so, we obtain hypervirial distribution functions, valid in these two limits, that can generate the potential--density pairs of these models to an arbitrarily high degree of accuracy. This procedure is explicitly carried out for the H\'enon isochrone, Jaffe, Dehnen and NFW models and the accuracy of this procedure is established. Finally, we derive some universal properties for these hypervirial distribution functions, involving the asymptotic behaviour of the anisotropy parameter and its relation to the density slope in this regime. In particular, we show that the cusp slope--central anisotropy inequality is saturated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.