Abstract

PurposeTo investigate the dosimetric impact of deep learning-based auto-segmentation of organs at risk (OARs) on nasopharyngeal and rectal cancer.Methods and materialsTwenty patients, including ten nasopharyngeal carcinoma (NPC) patients and ten rectal cancer patients, who received radiotherapy in our department were enrolled in this study. Two deep learning-based auto-segmentation systems, including an in-house developed system (FD) and a commercial product (UIH), were used to generate two auto-segmented OARs sets (OAR_FD and OAR_UIH). Treatment plans based on auto-segmented OARs and following our clinical requirements were generated for each patient on each OARs sets (Plan_FD and Plan_UIH). Geometric metrics (Hausdorff distance (HD), mean distance to agreement (MDA), the Dice similarity coefficient (DICE) and the Jaccard index) were calculated for geometric evaluation. The dosimetric impact was evaluated by comparing Plan_FD and Plan_UIH to original clinically approved plans (Plan_Manual) with dose-volume metrics and 3D gamma analysis. Spearman’s correlation analysis was performed to investigate the correlation between dosimetric difference and geometric metrics.ResultsFD and UIH could provide similar geometric performance in parotids, temporal lobes, lens, and eyes (DICE, p > 0.05). OAR_FD had better geometric performance in the optic nerves, oral cavity, larynx, and femoral heads (DICE, p < 0.05). OAR_UIH had better geometric performance in the bladder (DICE, p < 0.05). In dosimetric analysis, both Plan_FD and Plan_UIH had nonsignificant dosimetric differences compared to Plan_Manual for most PTV and OARs dose-volume metrics. The only significant dosimetric difference was the max dose of the left temporal lobe for Plan_FD vs. Plan_Manual (p = 0.05). Only one significant correlation was found between the mean dose of the femoral head and its HD index (R = 0.4, p = 0.01), there is no OARs showed strong correlation between its dosimetric difference and all of four geometric metrics.ConclusionsDeep learning-based OARs auto-segmentation for NPC and rectal cancer has a nonsignificant impact on most PTV and OARs dose-volume metrics. Correlations between the auto-segmentation geometric metric and dosimetric difference were not observed for most OARs.

Highlights

  • Organs at risk (OARs) delineation is a critical task in radiotherapy

  • One significant correlation was found between the mean dose of the femoral head and its Hausdorff distance (HD) index (R = 0.4, p = 0.01), there is no OARs showed strong correlation between its dosimetric difference and all of four geometric metrics

  • Deep learning-based OARs auto-segmentation for nasopharyngeal carcinoma (NPC) and rectal cancer has a nonsignificant impact on most PTV and OARs dose-volume metrics

Read more

Summary

Introduction

Organs at risk (OARs) delineation is a critical task in radiotherapy. It affects many aspects of treatment planning, which can further affect the probability of localGuo et al Radiat Oncol (2021) 16:113 tumor control and normal tissue complications [1,2,3,4]. Organs at risk (OARs) delineation is a critical task in radiotherapy. It affects many aspects of treatment planning, which can further affect the probability of local. Manual OARs delineation is time-consuming and tedious work. This fact is especially true for cancers with complex anatomy, such as nasopharyngeal carcinoma (NPC). Auto-segmentation can reduce the work intensity of oncologists and improve work efficiency [5,6,7,8,9,10]. The latest relevant studies have shown promising results for these systems, improving consistency among oncologists and shortening the delineation time [14,15,16]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.