Abstract

This study investigated the dosage-effect of biochar on the suppressed mesophilic digestion of oily sludge (OS) containing naphthalene (recalcitrant compound) and starch (easily bioavailable substrate). Methanogenesis was inhibited in control with OS, where biomethane yield (63.33 mL/gVS) was obviously lower than theoretical yield (260.55 mL/gVS). With adding optimal dose of biochar (0.60 g/gVS OS), the highest CH4 yield (138.41 mL/gVS) was 2.19 times of control. Meanwhile, the efficiencies of hydrolysis, acidogenesis and acetogenesis were significantly enhanced. However, excessive biochar (4.80 g/gVS OS) caused negative effects with methanogenic efficiency diminished by 32.5% and lag phase prolonged by 5.72 h. Dissolved organic matter (DOM) analysis showed that humic acid-like and fulvic acid-like components percentages of fluorescence regional integration were decreased because of the adsorption of biochar. In addition, biochar mediating interspecies electron transfer selectively enriched electroactive fermentation bacteria (Clostridium and Bacteroides) and acetoclastic Methanosaeta, which was responsible for promoting mesophilic digestion performance. The functional genes related to metabolism and environmental information processing were potentially activated by biochar. Above results indicate that moderate biochar application may mitigate the bio-toxicity suppression of OS, which help to provide a promising pathway for reinforcing oily wastes bio-treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call