Abstract

Given a Tyurin degeneration of a Calabi-Yau complete intersection in a toric variety, we prove gluing formulas relating the generalized functional invariants, periods, and I-functions of the mirror Calabi-Yau family and those of the two mirror Landau-Ginzburg models. Our proof makes explicit the “gluing/splitting” of fibrations in the Doran-Harder-Thompson mirror conjecture. Our gluing formula implies an identity, obtained by composition with their respective mirror maps, that relates the absolute Gromov-Witten invariants for the Calabi-Yaus and relative Gromov-Witten invariants for the quasi-Fanos.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.