Abstract

Dysfunction of dopamine neural systems is hypothesized to underlie neuropsychiatric disorders and psychostimulant drug abuse. At least three dopamine systems have been characterized in the brain-nigrostriatal, mesolimbic, and mesocortical. Abnormalities of nigrostriatal dopamine neurons cause motor impairment leading to Parkinson's disease, whereas dysfunction of mesolimbic and mesocortical dopamine neurons are most implicated in psychotic disorders such as schizophrenia and in drug addiction. One of the primary neural sites of action of potent antipsychotic agents and psychostimulant drugs of abuse are dopamine receptors and dopamine transporters which, respectively, mediate the induction and termination of dopamine's actions. Very limited information is, however, available about which particular set of dopaminergic cells in the human brain actually express the genes for these dopamine-specific proteins. In this study, we observed that the dopamine transporter and D 2 receptor messenger RNAs are differentially expressed within the human mesencephalon: highest expression in ventral subpopulations of the substantia nigra pars compacta neurons with lowest expression in the mesolimbic/mesocortical ventral tegmental area and retrorubral cell groups. These findings suggest that motor- and limbic-related mesencephalic neurons in the human brain differ in the degree of dopamine transporter and D 2 receptor gene expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.