Abstract

Dopamine D1 receptor (D1DR) and D2 receptor (D2DR) are closely associated with pain modulation, but their exact effects on neuropathic pain and the underlying mechanisms remain to be identified. Our research revealed that intrathecal administration of D1DR and D2DR antagonists inhibited D1–D2DR complex formation and ameliorated mechanical and thermal hypersensitivity in chronic constriction injury (CCI) rats. The D1–D2DR complex was formed in the rat spinal cord, and the antinociceptive effects of D1DR and D2DR antagonists could be reversed by D1DR, D2DR, and D1–D2DR agonists. Gαq, PLC, and IP3 inhibitors also alleviated CCI-induced neuropathic pain. D1DR, D2DR, and D1–D2DR complex agonists all increased the intracellular calcium concentration in primary cultured spinal neurons, and this increase could be reversed by D1DR, D2DR antagonists and Gαq, IP3, PLC inhibitors. D1DR and D2DR antagonists significantly reduced the expression of p-PKC γ, p-CaMKII, p-CREB, and p-MAPKs. Levo-corydalmine (l-CDL), a monomeric compound in Corydalis yanhusuo W.T. Wang, was found to obviously suppress the formation of the spinal D1–D2DR complex to alleviate neuropathic pain in CCI rats and to decrease the intracellular calcium concentration in spinal neurons. l-CDL-induced inhibition of p-PKC γ, p-MAPKs, p-CREB, and p-CaMKII was also reversed by D1DR, D2DR, and D1–D2DR complex agonists. In conclusion, these results indicate that D1DR and D2DR form a complex and in turn couple with the Gαq protein to increase neuronal excitability via PKC γ, CaMKII, MAPK, and CREB signaling in the spinal cords of CCI rats; thus, they may serve as potential drug targets for neuropathic pain therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.