Abstract

The variability of the Atlantic meridional ocean heat transport (OHT) has been diagnosed from a simulation of a coupled ocean‐atmosphere general circulation model (GCM), and the mechanisms responsible for this variability have been elucidated. Interannual variability is dominated by windstress‐driven Ekman fluctuations, which account for 50.3% of the OHT variance. By contrast, decadal and multidecadal variability in Atlantic OHT is dominated by a mixed thermohaline/gyre mode driven by variations in buoyancy fluxes and windstress curl. It accounts for 55.6% of low pass filtered OHT variance. The North Atlantic Oscillation (NAO) has a significant role in both the interannual mode and the low frequency mode, but it is not the only important driver. A notable feature of both modes is significant changes in the tropical atmosphere and ocean. We highlight a number of potential mechanisms involved in the tropical‐extratropical teleconnections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.