Abstract
AbstractIn most fully coupled climate models, the net radiative feedback magnitude decreases with time after abruptly quadrupling CO2. Hypotheses have been raised to explain the time dependence of radiative feedbacks, including the influence from surface warming pattern and ocean heat uptake (OHU) pattern. By using the Green's Function derived from pairs of simulations in the atmospheric model (CAM5) coupled with a slab‐ocean, with each simulation being forced by a localized surface heat flux anomaly, we evaluate the influences of regional OHU on transient surface warming pattern, accounting for the changes in radiative feedbacks. The attribution of the time‐evolving net radiative feedback highlights the remote impact from OHU over the Southern Ocean on tropical sea surface temperature. The time‐dependent weakening of OHU over the Southern Ocean gives rise to increasingly enhanced surface warming in southeastern Pacific, which leads to decreasing tropospheric stability and more positive cloud feedback decades after quadrupling CO2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.