Abstract

Ammonia is a major environmental factor influencing biomethanation in full-scale anaerobic digesters. In this study, the effect of different ammonia levels on methanogenic pathways and methanogenic community composition of full-scale biogas plants was investigated. Eight full-scale digesters operating under different ammonia levels were sampled, and the residual biogas production was followed in fed-batch reactors. Acetate, labelled in the methyl group, was used to determine the methanogenic pathway by following the 14CH4 and 14CO2 production. Fluorescence in situ hybridisation was used to determine the methanogenic communities’ composition. Results obtained clearly demonstrated that syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis was the dominant pathway in all digesters with high ammonia levels (2.8–4.57 g NH4 +-N L−1), while acetoclastic methanogenic pathway dominated at low ammonia (<1.21 g NH4 +-N L−1). Thermophilic Methanomicrobiales spp. and mesophilic Methanobacteriales spp. were the most abundant methanogens at free ammonia concentrations above 0.44 g NH3-N L−1 and total ammonia concentrations above 2.8 g NH4 +-N L−1, respectively. Meanwhile, in anaerobic digesters with low ammonia (<1.21 g NH4 +-N L−1) and free ammonia (<0.07 g NH3-N L−1) levels, mesophilic and thermophilic Methanosaetaceae spp. were the most abundant methanogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.