Abstract

A spatially periodic structure arising in a nematic liquid crystal layer with planar orientation under the effect of an oscillating Poiseuille flow is described theoretically. The effect is analyzed on the basis of hydrodynamic equations of nematic liquid crystals, from which a self-consistent set of equations for perturbations of hydrodynamic variables is separated. It is demonstrated that the structure type and the threshold parameters of the effect depend on the frequency and the layer thickness through the scaling combination ωh 2. The dependence of the configuration of arising distortions on the value of viscosity α3 is analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.