Abstract

In the south-eastern Aegean several composite Upper Miocene volcanoes have erupted a variety of extrusive and intrusive rocks of mainly intermediate composition with potassic affinities. This study discusses the tectonic setting of this distinct igneous province (Dodecanese Province, DP) and presents mineralogical, geochemical and isotopic (Sr, Nd) characteristics of mafic rocks from two of its centers (Bodrum, Turkey and Samos, Greece). The mafics fall in two groups: ultrapotassics in Bodrum and shoshonitic rocks in Bodrum and Samos, with their geochemical signature varying from typical arc-like (Bodrum) to weakly orogenic (Bodrum, Samos). The Bodrum ultrapotassic rocks are unusual and important in that while they display the petrological and geochemical characteristics of primary mantle-derived magmas they are also extraordinary LIL element-enriched. Their initial Sr and Nd isotopic compositions ( 87 Sr 86 Sr =0. 7071; 143 Nd/ 144 Nd = 0.512465) lie at one extreme of the Bodrum-Samos range ( 87 Sr 86 Sr = 0.7052−0.7071; 143 Nd/ 144 Nd = 0/51246−0.51264) and are evidence for the existence of an “enriched mantle” component. Geochemical characteristics, including Nd- and Sr-isotope data, are used to discuss source component mixing arrays defined by a wide range of circum-Mediterranean igneous provinces including the DP suites. At least three endmembers are required: (1) enriched mantle, (2) depleted mantle and (3) continental crust. The enriched mantle is most probably part of the sub-continental lithosphere which may be regionally distributed throughout the Mediterranean. Enrichment by emplacement of small fractions of melts of the depleted mantle can yield such a source if the enrichment is ancient (≈1.25 Ga). Crustal involvement may be the product of the extensive role of AFC processes operating both close to the Moho and in higher level magma chambers. The location of the DP in the transitional margin of the Aegean zone of extension may partly explain the survival to upper crustal levels of emplacement, of unmixed, ultrapotassic melts of the enriched heterogeneities in the lithospheer. Changes in Ti/Zr ratio implicate the buffering role of a titanate in the lithosphere. Loss of orogenic geochemical signature and depletion in potassium content in recent volcanics in Western Anatolia imply an increased role of depleted mantle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call