Abstract

We have identified the yeast CRT1 gene as an effector of the DNA damage and replication checkpoint pathway. CRT1 encodes a DNA-binding protein that recruits the general repressors Ssn6 and Tup1 to the promoters of damage-inducible genes. Derepression of the Crt1 regulon suppresses the lethality of mec1 and rad53 null alleles and is essential for cell viability during replicative stress. In response to DNA damage and replication blocks, Crt1 becomes hyperphosphorylated and no longer binds DNA, resulting in transcriptional induction. CRT1 is autoregulated and is itself induced by DNA damage, indicating the existence of a negative feedback pathway that facilitates return to the repressed state after elimination of damage. The inhibition of an autoregulatory repressor in response to DNA damage is a strategy conserved throughout prokaryotic and eukaryotic evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.