Abstract
The human melanoma cell line M21 can be induced to differentiate into oligodendrocyte-like cells with concommitant cessation of cell division. Cytosine-arabinoside, 5-aza-2'-deoxycytidine, hydroxyurea, aphidicolin, and phorbol-12-myristate-13-acetate were found to be potent differentiation inducers. We have analyzed the changes of methylation of DNA cytosines that occur after treatment of M21 cells with these compounds. Although DNA methylation levels remain unchanged in the presence of aphidicolin and phorbol ester, 5-aza-2'-deoxycytidine-induced differentiation of these cells results in a 40% DNA demethylation. On the other hand, hydroxyurea and cytosine-arabinoside treatment causes DNA hypermethylation, which, in the case of the cytidine analogue is of only transient nature. These results show that the differentiation of human melanoma cells can be accompanied by variable changes of DNA methylation levels. In another set of experiments, the DNA methylation levels have been analyzed during cytosine-arabinoside-induced differentiation of human K562 erythroleukemia cells. In this system, a transient DNA demethylation precedes the establishment of the differentiated phenotype. Since DNA replication is inhibited, this demethylation cannot be explained by inhibition of the maintenance activity of DNA methyltransferase, but is more likely caused by an active excision of 5-methylcytosine from DNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.