Abstract

DNA repair of abasic sites is accomplished in mammalian cells by two distinct base excision repair (BER) pathways: a single nucleotide insertion pathway and a proliferating cell nuclear antigen (PCNA)-dependent pathway involving a resynthesis patch of 2-10 nucleotides 3' to the lesion. The latter pathway shares some enzymatic components with the nucleotide excision repair (NER) pathway acting on damage induced by ultraviolet light: both pathways are strictly dependent on PCNA and several observations suggest that the polymerization and ligation phases may be carried out by common enzymatic activities (DNA polymerase delta/epsilon and DNA ligase I). Furthermore, it has been postulated that the transcription-NER coupling factor Cockayne syndrome B has a role in BER. We have investigated whether three NER proteins endowed with DNA helicase activities (the xeroderma pigmentosum D and B gene products and the Cockayne syndrome B gene product) may also be involved in repair of natural abasic sites, by using the Chinese hamster ovary mutant cell lines UV5, UV61 and 27-1. No defect of either the PCNA-dependent or the single nucleotide insertion pathways could be observed in UV5, UV61 or 27-1 mutant cell extracts, thus showing that the partial enzymatic overlap between PCNA-dependent BER and NER does not extend to DNA helicase activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.