Abstract
Segments of protein that do not adopt a well-ordered conformation in the absence of DNA can still contribute to site-specific recognition of DNA. The first six residues (NH2-Ser1-Thr2-Lys3-Lys4-Lys5-Pro6-) of phage lambda repressor are flexible but are important for site-specific binding. Low-temperature x-ray crystallography and codondirected saturation mutagenesis were used to study the role of this segment. All of the functional sequences have the form [X]1-[X]2-[Lys or Arg]3-[Lys]4-[Lys or Arg]5-[X]6. A high-resolution (1.8 angstrom) crystal structure shows that Lys3 and Lys4 each make multiple hydrogen bonds with guanines and that Lys5 interacts with the phosphate backbone. The symmetry of the complex breaks down near the center of the site, and these results suggest a revision in the traditional alignment of the six lambda operator sites.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.