Abstract

Using an ATP-depletion paradigm to augment glucocorticoid receptor (GR) binding to the nuclear matrix, we have identified a minimal segment of the receptor that constitutes a nuclear matrix targeting signal (NMTS). While previous studies implicated a role for the receptor's DNA-binding domain in nuclear matrix targeting, we show here that this domain of rat GR is necessary, but not sufficient, for matrix targeting. A minimal NMTS can be generated by linking the rat GR DNA-binding domain to either its tau2 transactivation domain in its natural context, or a heterologous transactivation domain derived from the Herpes simplex virus VP16 protein. The transactivation and nuclear matrix-targeting activities of tau2 are separable, as transactivation mutants were identified that either inhibited or had no apparent effect on matrix targeting of tau2. A functional interaction between the NMTS of rat GR and the RNA-binding nuclear matrix protein hnRNP U was revealed in cotransfection experiments in which hnRNP U overexpression was found to interfere with the transactivation activity of GR derivatives that possess nuclear matrix-binding capacity. We have therefore ascribed a novel function to a steroid hormone transactivation domain that could be an important component of the mechanism used by steroid hormone receptors to regulate genes in their native configuration within the nucleus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call