Abstract

Given a projective scheme X over a field k, an automorphism σ: X → X, and a σ-ample invertible sheaf L, one may form the twisted homogeneous coordinate ring B = B(X, L, σ), one of the most fundamental constructions in noncommutative projective algebraic geometry. We study the primitive spectrum of B, as well as that of other closely related algebras such as skew and skew-Laurent extensions of commutative algebras. Over an algebraically closed, uncountable field k of characteristic zero, we prove that the primitive ideals of B are characterized by the usual Dixmier-Moeglin conditions whenever dim X ≤ 2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.