Abstract
The Bacillus subtilis divIVA1 mutation causes misplacement of the septum during cell division, resulting in the formation of small, circular, anucleate minicells. This study reports the cloning and sequence analysis of 2.4 kb of the B. subtilis chromosome including the divIVA locus. Three open reading frames were identified: orf, whose function is unknown; divIVA; and isoleucyl tRNA synthetase (ileS). We identified the point mutation in the divIVA1 mutant allele. Inactivation of divIVA produces a minicell phenotype, whereas overproduction of DivIVA results in a filamentation phenotype. Mutants with mutations at both of the minicell loci of B. subtilis, divIVA and divIVB, possess a minicell phenotype identical to that of the DivIVB- mutant. The DivIVA-mutants, but not the DivIVB- mutants, show a decrease in sporulation efficiency and a delay in the kinetics of endospore formation. The data support a model in which divIVA encodes the topological specificity subunit of the minCD system. The model suggests that DivIVA acts as a pilot protein, directing minCD to the polar septation sites. DivIVA also appears to be the interface between a sporulation component and MinCD, freeing up the polar septation sites for use during the asymmetric septation event of the sporulation process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.